| 1. | Prove that no four consecutive binomial coefficients can be in arithmetic progression . 证明不存在四个连续的二项系数成算术级数。 |
| 2. | A note on the least prime in an arithmetic progression 关于算术级数中最小素数的注记 |
| 3. | Some exponential sums over primes in an arithmetic progression 算术级数中的一个指数和估计 |
| 4. | It is proved that the least prime in an arithmetic progression with difference 立方部分有界为公差的算术级数中的最小素数 |
| 5. | Method for solving finite summation of k steps arithmetic progression by using power series 阶等差数列有限和的幂级数求法 |
| 6. | The result shows that the utility of the arithmetic progression can limit the first kind of misread 结果表明,等差数列的利用可规范第一种误读。 |
| 7. | The principal purpose of this paper is to consider the bounds of solutions of the cubic equation with the prime variables in arithmetic progressions modulo k > 1 本文的主要目的是估计三次素变数方程的解在模k 1算术数列中的上界。 |
| 8. | In the process for doing " generalization " , we make use of the higher arithmetic progression concepts [ 3 ] to deal with the results finally carry out the model of solving the crossing number of network graphs problems , this way may be an originality 在进行观察归纳研究法模式来探讨管线网路设置,其交叉处个数问题类化、一般化的过程中,引进高阶等差级数的理论3来处理所得结果的一般解决模式,乃是一种创意。 |